

Reducing Nitrogen Run-off and Emission, and Increasing Rice Productivity in African Rice Production Environment

Jos van Boxtel¹, Michael Selvaraj², Kofi Dartey³, Jimmy Lamo⁴, Maxwell Asante³, Alhassan Maji⁵, Zhongjin Lu¹, Manabu Ishitani², Prince Addae⁶, Kayode A. Sanni⁶

¹Arcadia Biosciences, USA, ²CIAT, Colombia, ³CSIR-CRI, Ghana, ⁴NARO-NaCRRI, Uganda, ⁵NCRI, Nigeria, ⁶AATF, Kenya

Montpellier

March 16-18, 2015

Sustainability of Yields under a Changing Climate

- Increased yields needed to meet production demands
 - Increased agricultural inputs (fertilizer and water) are needed to sustain high yields
- Challenges of Higher Yield
 - Environmental damage from industrial growing practices
 - Heavy fertilizer use contributes to GHG emissions and pollution of water ways
 - Increasing burden on use of fresh water

African Soil Constraints

FIGURE 1 Dominant soil constraint by farming system type in Africa south of the Sahara

Cox C., and Koo J. (2014). Soil Fertility. In K. Sebastian (Ed.), Atlas of African Agriculture Research & Development.

70% of Nitrogen Fertilizer is Lost

CLIMATE-SMAR

Agriculture

Nitrous Oxide is a Potent Greenhouse Gas

Nitrous Oxide has 300 times the global warming potential of CO₂

Table 8.1 Characteristics of Kyoto Greenhouse Gases

Despite the higher GWP of other greenhouse gases over a 100-year time horizon, carbon dioxide constitutes around three-quarters of the total GWP of emissions. This is because the vast majority of emissions, by weight, are carbon dioxide. HFCs and PFCs include many individual gases; the data shown are approximate ranges across these gases.

	Lifetime in the atmosphere (years)	100-year Global Warming Potential (GWP)	Percentage of 2000 emissions in CO ₂ e
Carbon dioxide	5-200	1	77%
Methane	10	23	14%
Nitrous Oxide	115	296	8%
Hydrofluorocarbons (HFCs)	1 – 250	10 – 12,000	0.5%
Perfluorocarbons (PFCs)	>2500	>5,500	0.2%
Sulphur Hexafluoride (SF ₆)	3,200	22,200	1%

Source: Ramaswamy et al. (2001)⁸ and emissions data from the WRI CAIT database⁹.

AATF NEWEST Rice Goals

- Traits that mitigate causes of climate change
- Traits that harness against effects of climate change
- Traits that allow sustained yield under low input conditions
- 1. Improved Nitrogen Use Efficiency (NE)
- 2. Improved Water Use Efficiency (WE)
- 3. Improved Salt Tolerance (ST)
- Breeding material for Sub Saharan Africa, in the public domain
- Deliver a technology free of IP with humanitarian focus
- Use of germplasm with proven agricultural track record in SSA

NEWEST Participants

Choice of Germplasm

- NERICA (New Rice for Africa) varieties
- Wide spread throughout Africa
- Consumer-related acceptability
- Yield potential
- Amenable to genetic engineering

NERICA-4

Deliverables 2008-2014

15 Nerica-4 NUE lines:

All marker-free and vector backbone-free

20 Nerica-4 NEWEST lines:

- All vector backbone-free
- 6 events marker-free, 16 single copy T-DNA insertions

CIAT 2nd Lowland NUE Trial - 2013

ANOVA; P=0.05; $LSD_{0.05} = 4.72$

CRI-Ghana 1st Rainfed NUE Trial - 2013

- event NUE-3 consistently outperforming WT;
- event NUE-1 and -2 outperforming at 90 kg/ha N

Overall Best Performers (% yield increase vs. control)

	Colombia							Ghana						Uganda		
	LL1		LL2		UL	1		2		1						
kg/ha N	0	90	180	0	90	180	90	30	60	90	30	60	90	30	60	90
NUE-1				35						35						
NUE-2	16	28	25	33	30	25	34			34			14			
NUE-3				38	15			21	16	93	52	35	11			
NUE-6	22				26	14	27									
NUE-7								39				4	12			
NUE-9								14			15		19			
NUE-11								16			22					
NUE-12									21		11					
NUE-13								20					24			
NUE-15															6	5
	significantly outperforming control					outperforming control, but not significantly										

N Fertilization/Yield Management

Methodology Development for Capturing N₂O Emissions, tied to carbon credit trade

- China (2007-2013)
- India (2009-2013)
- Indonesia (2014-2016)

Gas Monitoring throughout the Crop Cycle

CLIMATE-SMART

Rice N₂O Emission at Different N Rates

Greenhouse Gas Emissions from Rice Fields

Planned N₂O Emissions Capture

Indonesian Agricultural Environment Research Institute (IAERI), Pati, Central Java, Indonesia

Establish Methodology to Capture (N₂O) Emissions from Rice

Development of New Methodology

- Collection of field data and submission of a new methodology to the UNFCCC/CDM (Clean Dev. Mechanism) Executive Board
- Worked with relevant CDM authorities and/or other experts within and outside China/India to achieve approval by Executive Board
- Dec 2012, Arcadia methodology was approved
- Farmers to earn carbon credits from reduced fertilizer use in conjunction with Nitrogen Efficient seed

Establishment of Agricultural Carbon Credit and Trading System

- The NAAFS/IRRI coordinates with the appropriate authorities in Ningxia/Haryana/Tamil Nadu to establish an agricultural carbon credit and trading system within the regions
- System is based upon methodologies approved by the UNFCCC/CDM Executive Board and conform to international standards

Expected Outcomes

For high input farming systems, aiming at sustaining yield:

Lowering fertilizer input lowers production cost

Reducing nitrogen run-off and emission

Additional cost reduction through carbon credit trading

For low input farming systems, aiming at increasing yield:

Even with continued low fertilizer applications, 20% or more yield increase is expected

Reducing negative environmental impact is of lower magnitude

Further reducing cost by carbon credit trading may be achieved when carbon market in place

Value of NUE Trait to Grower "The Triple Win"

Assumptions:

- 10-15% improvement in yield
- 30% N use reduction (high input farming system)
- 15% decrease in total production cost
- Carbon price of \$10/metric ton of CO₂ eq. (current)

1. Food Security: Yield Increase: \$700 / ha

2. Mitigation: a) Fertilizer Savings: \$250 / ha

b) Carbon trade: \$53 / ha

3. Adaptation: additional WE and ST

Nitrogen-Use Efficient, Water-Use Efficient and Salt-Tolerant Rice Project Nitrogen&Water Efficient Salt Tolerant Rice **CIAT** Arcadia PIPRA USAID RONTHE AMERICAN PROPE

Thank you!

Merci!